Spectroscopic and kinetic investigation of the fully reduced and mixed valence states of ba3-cytochrome c oxidase from Thermus thermophilus: a Fourier transform infrared (FTIR) and time-resolved step-scan FTIR study.
نویسندگان
چکیده
The complete understanding of a molecular mechanism of action requires the thermodynamic and kinetic characterization of different states and intermediates. Cytochrome c oxidase reduces O(2) to H(2)O, a reaction coupled to proton translocation across the membrane. Therefore, it is necessary to undertake a thorough characterization of the reduced form of the enzyme and the determination of the electron transfer processes and pathways between the redox-active centers. In this study Fourier transform infrared (FTIR) and time-resolved step-scan FTIR spectroscopy have been applied to study the fully reduced and mixed valence states of cytochrome ba(3) from Thermus thermophilus. We used as probe carbon monoxide (CO) to characterize both thermodynamically and kinetically the cytochrome ba(3)-CO complex in the 5.25-10.10 pH/pD range and to study the reverse intramolecular electron transfer initiated by the photolysis of CO in the two-electron reduced form. The time-resolved step-scan FTIR data revealed no pH/pD dependence in both the decay of the transient Cu(B)(1+)-CO complex and rebinding to heme a(3) rates, suggesting that no structural change takes place in the vicinity of the binuclear center. Surprisingly, photodissociation of CO from the mixed valence form of the enzyme does not lead to reverse electron transfer from the reduced heme a(3) to the oxidized low-spin heme b, as observed in all the other aa(3) and bo(3) oxidases previously examined. The heme b-heme a(3) electron transfer is guaranteed, and therefore, there is no need for structural rearrangements and complex synchronized cooperativities. Comparison among the available structures of ba(3)- and aa(3)-cytochrome c oxidases identifies possible active pathways involved in the electron transfer processes and key structural elements that contribute to the different behavior observed in cytochrome ba(3).
منابع مشابه
Probing the Q-proton pathway of ba3-cytochrome c oxidase by time-resolved Fourier transform infrared spectroscopy.
In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the...
متن کاملFourier transform infrared (FTIR) and step-scan time-resolved FTIR spectroscopies reveal a unique active site in cytochrome caa3 oxidase from Thermus thermophilus.
Fourier transform infrared (FTIR) and step-scan time-resolved FTIR difference spectra are reported for the [carbonmonoxy]cytochrome caa(3) from Thermus thermophilus. A major C-O mode of heme a(3) at 1958 cm(-1) and two minor modes at 1967 and 1975 cm(-1) (7:1:1) have been identified at room temperature and remained unchanged in H(2)O/D(2)O exchange. The observed C-O frequencies are 10 cm(-1) hi...
متن کاملProbing protonation/deprotonation of tyrosine residues in cytochrome ba3 oxidase from Thermus thermophilus by time-resolved step-scan Fourier transform infrared spectroscopy.
Elucidating the properties of the heme Fe-Cu(B) binuclear center and the dynamics of the protein response in cytochrome c oxidase is crucial to understanding not only the dioxygen activation and bond cleavage by the enzyme but also the events related to the release of the produced water molecules. The time-resolved step-scan FTIR difference spectra show the ν(7a)(CO) of the protonated form of T...
متن کاملFTIR and Step-scan Time-resolved FTIR Spectroscopies Reveal a Unique Active site in Cytochrome caa3 Oxidase from Thermus Thermophilus
متن کامل
ns-μs Time-Resolved Step-Scan FTIR of ba3 Oxidoreductase from Thermus thermophilus: Protonic Connectivity of w941-w946-w927
Time-resolved step-scan FTIR spectroscopy has been employed to probe the dynamics of the ba₃ oxidoreductase from Thermus thermophilus in the ns-μs time range and in the pH/pD 6-9 range. The data revealed a pH/pD sensitivity of the D372 residue and of the ring-A propionate of heme a₃. Based on the observed transient changes a model in which the protonic connectivity of w941-w946-927 to the D372 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 287 44 شماره
صفحات -
تاریخ انتشار 2012